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Abstract 
 

The hybrid EnKF (Ensemble Kalman Filter) -Var (Variational) data assimilation 

(DA) system based on GSI (Gridpoint Statistical Interpolation) is extended for the 

Hurricane WRF model (HWRF). Background ensemble forecasts initialized by the EnKF 

are used to provide the flow-dependent error covariance to be ingested by GSI using the 

extended control variable method. The hybrid system is then applied to assimilate 

airborne radar data.   

In this paper, the newly developed HWRF hybrid system capable of assimilating 

airborne radar observations is introduced. The impact of using variously estimated 

background error covariances on TC (Tropical Cyclone) core analyses and subsequent 

forecasts is explored by a detailed study of hurricane Sandy (2012) and by systematic 

comparison of various sensitivity experiments for multiple cases during 2012-2013 

seasons. The hybrid system using the HWRF EnKF ensemble covariance (Hybrid-HENS) 

is able to correct both the wind and mass fields in a dynamically and thermodynamically 

coherent fashion.  In contrast, the wind and pressure adjustment by GSI3DVar using the 

static covariance are inconsistent. The wind and pressure relation in the covariances 
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derived from the GFS ensemble (Hybrid-GENS) improves upon the static covariance, but 

is still inconsistent compared to that of HWRF. Verifications against independent flight 

level and SFMR wind data, and HRD radar wind composite reveal that the Hybrid-HENS 

system improves the analyzed TC structure upon both GSI3DVar and Hybrid-GENS.  

Hybrid-HENS and Hybrid-GENS improve the track, MSLP and Vmax forecast relative to 

GSI3DVar.  Hybrid-HENS further improves track forecasts compared to Hybrid-GENS.  

Hybrid-HENS provides the largest positive impact of the airborne radar data.  In 

comparison, GSI3DVar shows consistently negative impact of the data when analyzing 

the structure and verifying track forecasts.  Blending the static background error 

covariance in the hybrid system improves the maximum wind forecast while little benefit 

is found in the analyzed structures and the MSLP and track forecasts.  

Key words: GSI, hybrid EnKF-Var data assimilation, Tail Doppler Radar, 

Hurricane 

 

1. Introduction 

While steady progress has been made in improving TC (Tropical Cyclone) track 

forecasts, difficulties still remain.  Making progress for the intensity forecast is even 

more difficult (Rogers et al., 2013).  This can be attributed to deficiencies in both models 

and current operational data assimilation systems. With respect to data assimilation 

methods, the current algorithms used in operations often do not permit effective 

utilization of existing observations.   
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The US operational Hurricane WRF (Weather Research and Forecasting Model; 

henceforth, HWRF) modeling and prediction system had adopted a three-dimensional 

variational (3DVar) data assimilation system using the National Centers for 

Environmental Prediction (NCEP) Gridpoint Statistical Interpolation algorithm (GSI, Wu 

et al., 2002).  It used a quasi-static background error covariance (Parrish and Derber, 

1992; Wu et al., 2002), which when applied to TCs, cannot represent the model forecast 

uncertainties accurately.  Specifically, adjustments which are made when assimilating 

observations using GSI are not consistent with the TC in the background forecast and the 

cross-variable error statistics are either lacking or not suitable for TCs, which can result 

in an analyzed TC that lacks dynamic and thermodynamic coherency. 

Recently, an ensemble-based data assimilation method (ENSDA) has been 

implemented and tested for TC forecasting (Zhang et al., 2009; Torn, 2010; Li et al., 

2012; Aksoy et al., 2013).  As shown in these early studies, ENSDA uses ensemble 

covariance to infer error statistics within the same variables and across different variables 

flow-dependently. Therefore, state variables updated by ENSDA are dynamically and 

thermodynamically consistent.   

A hybrid ensemble-variational data assimilation (DA) method has been proposed 

(e.g., Hamill and Snyder, 2000; Lorenc, 2003; Etherton and Bishop, 2004; Wang et al., 

2007b; Wang, 2010). In this method, the analysis increment is calculated using an 

ensemble-based, flow-dependent estimate of the background covariance within the 

variational framework (Wang et al., 2013). The hybrid method has been implemented for 

This article is protected by copyright. All rights reserved.



GSI-based hybrid DA for Hurricane-WRF (HWRF) using airborne radar obs 

 5 

both regional and global numerical weather prediction models (e.g., Wang et al., 2008a,b; 

Buehner et al., 2010a,b; Bishop and Hodyss 2011; Wang 2011; Li et al., 2012; Zhang and 

Zhang, 2012; Clayton et al., 2013; Wang et al., 2013; Wang and Lei, 2014; Kutty and 

Wang 2015).  In particular, results from these studies indicate that the hybrid method may 

be able to take advantages of both the Var and EnKF methods (e.g., Wang et al., 2007a, 

2009; Buehner et al., 2010b; Zhang and Zhang, 2012; Wang et al., 2013).   

Recently, noted successes have been reported by using three-dimensional or four-

dimensional hybrid DA for TC track forecasts in coarse-resolution NWP model settings 

(Wang, 2011; Hamill et al., 2011; Wang and Lei, 2014; Poterjoy and Zhang 2014) and 

for track and intensity forecasts at convection-allowing resolutions which assimilate 

ground-based radar observations (Li et al., 2012). A hybrid EnKF–variational data 

assimilation system including both three-dimensional (3DEnVar) and four-

dimensional ensemble-variational (4DEnVar) frameworks was also developed 

based on the operational NCEP GSI system.  Experiments with the Global Forecast 

System (GFS) showed that forecasts produced by 3DEnVar were more skillful than 

GSI 3DVar measured by verification metrics for overall global forecast (Wang et al., 

2013) and for tropical cyclone forecast (Hamill et al., 2011).  4DEnVar further 

improved both the global and TC forecasts (Wang and Lei, 2014).   

Encouraged by the improvement of global forecasts resulting from the hybrid DA 

method, focused efforts have been made to adapt, apply, and test the GSI-based hybrid 

DA strategy for the operational HWRF model.  During the 2013 North Atlantic and 
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Eastern Pacific TC seasons, a hybrid DA method was adopted by the operational HWRF 

DA system where the background error covariance was derived from the GFS ensemble 

(Tong et al., 2016).  While the GFS ensemble is able to provide flow-dependent ensemble 

covariance, the resolution of the GFS ensemble covariance is too coarse to properly 

resolve the error covariance of the TC core.  Therefore, a self-consistent hybrid DA 

system for HWRF is developed where HWRF ensemble consistently initialized from 

HWRF EnKF analyses from previous DA cycle is ingested in the GSI hybrid, replacing 

the GFS ensemble.  

An accurate TC forecast is also highly contingent upon effective utilization of all 

available observations.  High-resolution airborne TC observations such as data from Tail 

Doppler radars (TDR) onboard reconnaissance aircrafts have been regularly collected 

since 1980s (Aberson et al., 2006).  Because effectively assimilating cloud or rain 

contaminated radiances is still a challenge, these data remain to be the primary source in 

the operational data stream that provide valuable three-dimensional description of the TC 

core circulation.  Recent studies using EnKF demonstrated positive impact of 

assimilating the airborne radar data (e.g., Weng and Zhang, 2012; Aksoy et al., 2012). 

Exploring the impact of airborne radar data using the hybrid DA method on TC core 

analysis and on subsequent forecast is, however, still limited.  Therefore, as a first step of 

evaluating the potential of the newly extended hybrid DA system, this study focuses on 

the assimilation of airborne radar observations.  Further development of the system to 
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assimilate all operational observations including TDR, conventional and satellite 

radiances are ongoing and results will be presented in future papers. 

This manuscript first describes the newly extended self-consistent, GSI-based 

ensemble-variational hybrid data assimilation for HWRF.  Using the newly developed 

system, the impact of using variously estimated background error covariances on TC core 

analyses and on subsequent forecasts assimilating the airborne radar observation is 

studied.  Specifically, the following scientific questions are addressed: a) What is the 

impact of using flow-dependent ensemble covariances derived from coarse-resolution 

GFS ensembles versus the use of the static covariance for TC initialization and forecast?  

b) Does using HWRF’s own EnKF ensemble provide further improvements relative to 

using the GFS ensemble?  c) What are the impacts of blending the static covariance and 

the EnKF ensemble covariance for TC core analysis and forecast?  And d) what are the 

differences of the impact of assimilating TDR data using the variously configured 

background error covariances? Compared to our earlier study of Li et al (2012), this 

study is among the first to explore the impact of assimilating airborne radar data using the 

hybrid DA method, addresses complementary scientific questions as outlined above, and 

uses many cases to draw systematic conclusions rather than a case study.  

 A detailed study of TC Sandy (2012) is documented first, followed by systematic 

results from multiple cases during 2012-2013 seasons. The rest of this paper is organized 

as follows: section 2 describes the hybrid system for HWRF.  Section 3 discusses the 

experiment design using Sandy as an example.  Detailed experiment results of Sandy 
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(2012) are discussed in section 4.  Section 5 presents systematic results for various 

sensitivity experiments for multiple cases during 2012-2013 seasons. The final section 

concludes the study.  

 

2. GSI-based hybrid EnKF-Var data assimilation system for HWRF 

 

Following the GSI-based hybrid EnKF-Var DA system for GFS (e.g., Wang et al., 

2013), a similar system is extended to HWRF.  For consistency, the description of the 

system and methods therein for HWRF parallels that of Wang et al. (2013) and the texts 

in this section is derived from Wang et al. (2013) with adaptation to the HWRF modeling 

system.  

As shown in Fig. 1, each cycle consists of the following three steps:  

1) Use the augmented control vector (ACV) method in GSI variational 

minimization (GSI-ACV) to update the HWRF control background forecast, where the 

flow dependent ensemble based error covariance is incorporated.  

2) Use an EnKF to update the HWRF forecast ensemble to produce the analysis 

ensemble.   

3) Advance HWRF ensemble and control forecasts to the next analysis time.  

The “GSI-ACV” component of the system was extended to HWRF (Fig. 1).  The 

mathematical details of the implementation of ACV in GSI are described in Wang 

(2010).  The formulas following the notation of Wang (2010) are briefly described below.  
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Lorenc (2003), Buehner (2005), Wang et al. (2007b) and Wang et al. (2008a) also 

adopted similar notations.  

The term x′  , denoting analysis increment, is defined as 

                                 1 1
x x (a x )

K e
k kk=

′ ′= +∑  .                                                                 (1) 

The first term on the right, 1x′ , is the increment corresponding to the static covariance.  

The second term on the right hand side is the increment corresponding to the flow-

dependent ensemble covariance.  xe
k  is the kth ensemble perturbation normalized by 

1K − , where K  is the ensemble size. The vector ak  is the augmented control vector 

(ACV) for the kth ensemble member. The symbol   is used to define the Schur product.    

The solution of both 1x′   and ak  in eq. (1) is solved through minimizing eq. (2): 

 
1 1 1

1 1 1 1 1 2

1 1 1
(x ,a) (x ) B (x ) (a) A (a) (y Hx ) R (y Hx )

2 2 2
T T o T oJ β β− − −′ ′′ ′ ′ ′ ′= + + − −  (2)                                                                                                             

The first and last terms on the right hand side correspond to the traditional 3DVar 

background and observational terms where 1B , , yo′  and H are the static error 

covariance, observation error covariance, innovation vector and observation operator 

respectively.  Different from traditional 3DVar, x′  is defined by (1) in the observational 

term.  In the second term of the right hand side, a  is called ACV, formed by 

concatenating K  vectors, ak , 1,k K=  .  As proved by Wang et al. (2007a), the block-

diagonal matrix A defines the localization applied to the ensemble covariance.  Similar to 

the implementation to GFS hybrid DA system as described in Wang et al. (2013), the 
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spatial localization is applied both horizontally and vertically and no cross-variable 

covariance localization is applied for HWRF.  For HWRF, ak  is applied for the variables 

such as surface pressure, wind, virtual temperature and relative humidity.   At the end of 

the variational minimization, these variables were converted to the corresponding HWRF 

prognostic variables. For HWRF, both horizontal and vertical localizations are realized 

through a recursive filter transformation (Hayden and Purser, 1995).  The distances are 

measured in kilometer and scale heights (i.e., natural log of the pressure) respectively for 

the horizontal and vertical localizations. For the vertical localization, the natural log of 

pressure is transformed into the HWRF Pressure-Sigma coordinate. As proved in Wang 

et al., 2007a and Wang et al. 2008, the inverses of the two factors β1  and β2  represent the 

weights assigned for the static and ensemble covariances respectively.  These two factors 

satisfy  
1 2

1 1
1

β β
+ = , which means the full background error covariance is a weighted sum 

of the static and ensemble covariances.  

The EnKF component is also extended to HWRF.  The same code has been 

interfaced with the GFS (Whitaker et al. 2008; Wang et al. 2013) and WRF ARW models 

(e.g., Johnson et al. 2015). This flavor of the EnKF adopts the ensemble square root filter 

algorithm (Whitaker and Hamill, 2002).  Like the implementation with GFS and WRF 

ARW (Whitaker et al. 2008; Wang et al. 2013; Wang and Lei 2014; Johnson et al. 2015), 

the EnKF is interfaced with the GSI where the observation operators, observation pre-

processing and quality control from GSI are used.  Covariance localization with cut-off 
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distances similar to those used by hybrid is adopted in the EnKF to reduce the sampling 

errors.   An adaptive, multiplicative inflation algorithm proposed by Whitaker and Hamill 

(2012) is adopted in the HWRF EnKF to alleviate the deficiency in the spread of the first 

guess ensemble.  

 

3. Experiment design  

In this section, Sandy (2012) is used as an example to illustrate the experiment 

design. Detailed results for this case will be discussed in section 4.  As documented in the 

report from the National Hurricane Center (NHC) 

(http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf) and as shown in Fig. 2, Sandy 

went through a complicated evolution during its life span as a late season TC. Figure 2 

shows the track, Vmax and minimum sea level pressure (MSLP) evolution of Sandy and 

the official HWRF forecasts 5 days before Sandy made landfall at the Northeast US.  The 

official HWRF forecasts initialized during October 27 and 28 in 2012 show eastward bias 

and forecasts initialized during October 26 and 27 overestimated Vmax and MSLP.  As 

also discussed in the NHC report, Sandy caused $50 billion dollar damages over the US, 

and was the second costliest hurricane for the US since 1900. 

 

a. The HWRF model configuration 

The HWRF model, a nonhydrostatic primitive equation model on a rotated-E grid, 

(http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.5a_Scient
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ificDoc.pdf ) is used in this study.  As an initial study of the newly extended system, for 

simplicity, a single domain with a grid spacing of 0.06 degrees (approximately 9 km) is 

used.  Future papers will document the hybrid system with moving nest capabilities 

where the inner nests are at higher resolution.  The HWRF is configured with 230×450 

horizontal grid points (Fig. 2a), and 61 vertical levels.  The model top is at 2 hPa.   

Following the physics configurations in the scientific documents for HWRF, the HWRF 

Ferrier microphysics scheme based on Eta Grid-scale Cloud and Precipitation scheme 

(Ferrier, 2005), the Simplified Arakawa-Schubert (SAS) cumulus parameterization 

scheme (Han and Pan, 2011), the modified surface layer parameterization scheme, the 

GFDL slab scheme for land surface model (Tuleya, 1994), the non-local planetary 

boundary layer parameterization scheme (Hong and Pan, 1996), the Eta GFDL short 

wave (Lacis and Hanson, 1974) and long wave (Fels and Schwarzkopf, 1975; 

Schwartzkopf and Fels, 1991) radiation parameterization schemes are included in the 

HWRF simulation. 

 

b. Airborne radar observations and processing 

In this study, the airborne radial velocity data from the tail Doppler radar aboard 

the NOAA P-3 aircraft are assimilated in variously designed experiments. Fig.3 shows 

the flight tracks for seven NOAA N42RF flight missions that were carried out for 

hurricane Sandy between 25-31 October 2012.  These flight missions were taken during 

25 ~ 31 of October 2012 for Sandy.  More details of flight missions and the data collected 
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can be found from http://www.aoml.noaa.gov/hrd/Storm_pages/sandy2012/radar.html.  

As described in Marks and Houze (1984, 1987), Marks et al. (1992), Weng and 

Zhang (2012), and Li (2015), the tail Doppler radar onboard NOAA P-3 uses a fore/aft 

scanning technique (FAST).  The angle between each radial beam and flight track is 70°.  

A cone surface is formed by the radial beams of each sweep. The antennas alternate 

between forward and afterward scanning.  As the aircraft moves, FAST forms a three 

dimensional radial velocity volume. The two closest forward (afterward) sweeps are 

separated by about 1.4 km.  Fig. 4 shows an example of a Tail Doppler Radar sweep. The 

negative values in blue means winds towards the radar, and the positive values in red 

means winds away from the radar. In this example, the radar is scanning a southerly wind 

with the fore scan pointing to the east. 

As described in Li (2015), further quality control and data thinning are conducted 

for the airborne radar observations collected by the Hurricane Research Division (HRD).  

As discussed in Gamache (2005), several passes of quality control were made by HRD. 

These procedures include spurious observations removing, aircraft motion subtracting, 

and radar velocity de-aliasing.  The data were then sent to the Environmental Modeling 

Center (EMC) in the BUFR (Binary Universal Form for the Representation) format for 

operational applications.   

An enhanced thinning procedure is subsequently implemented in GSI to reduce 

the density of the data following Li (2015), given that in the radial velocity data sent off 

to EMC, the spacing along a radial beam is about 1.2km, which is much higher than the 
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model resolution adopted in the current study.  The thinning procedure includes: 1) 

Separate fore/after scans based on the highest earth-relative elevation angle; 2) Divide the 

model space into many cubic boxes. 3) Different from the original thinning method of 

GSI, two radial velocities from forward and afterward scans instead of one radial velocity 

were maintained for each box. The primary goal of this modification is to keep wind 

components from different directions measured by the dual Doppler strategy. These two 

radial velocities are nearest to the center of the box. This thinning method is different 

from the “superobbing” technique applied by Zhang et al. (2009) which takes average 

within each box instead.   

Fig. 3 shows horizontal distributions of the radial velocity observations of Sandy 

from the Doppler radar onboard the NOAA P3 aircraft after thinning for all legs and all 

missions.  The plot is generated by aggregating from all levels.  The swath of TDR data is 

about 1 latitude/longitude degree in width due to the maximum unambiguous range 

(Aksoy et al. 2012). Fig. 5 shows the vertical distributions of the total number of TDR 

observations collected during the first P3 mission of Sandy. The greatest number of 

observation is generally around 880 hPa where strongest precipitation occurs. The typical 

aircraft altitude is between 2500 m to 3800 m (e.g. 

http://www.aoml.noaa.gov/hrd/Storm_pages/sandy2012/20121027H2_wind.jpg).  

Following Dowell et al. (2004) and Weng and Zhang (2012), the standard 

deviation of the radial velocity observation errors is assigned to be 3.0 1ms− .  

Experiments where other values of observation errors such as 5.0 1ms−  are conducted 
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(Not shown).  Initial examination of these experiments using other values of observation 

errors indicate that the comparison among experiments using different background error 

covariances does not vary qualitatively.  

 

c. Data assimilation experiments 

In the remainder of the section, nine experiments denoted as NoDA, GSI3DVar, 

Hybrid-HENS, Hybrid-HENS.5, Hybrid-GENS, Hybrid-HENS-Hrly, Hybrid-HENS.5-

Hrly, GSI3DVar-Hrly and Hybrid-GENS-Hrly (see definitions in Table 1) are presented 

to address the series of scientific questions proposed in section 1. 

As discussed in section 1, these experiments are different from our early hybrid 

DA study assimilating ground-based radar data such as Li et al. (2012) in both 

methodologies and scientific questions to be addressed.  While Li et al. (2012) used the 

ensemble produced by perturbed observation method and focused its comparison with the 

static covariance, the hybrid experiments here use HWRF’s own EnKF ensemble or the 

GFS ensemble and focus on the impact of various sources of ensembles on hybrid DA.  

Li et al. (2012) experimented with the ground-based radar whereas this study focuses on 

the airborne radar data. The current study also draws conclusion based on many cases 

rather than a single case.  Details of each experiment in Table 1 are described below. 

In the NoDA experiment, the initial condition and lateral boundary conditions are 

directly obtained from the ensemble mean analysis and forecast of the GFS hybrid Var-

EnKF data assimilation system (Wang et al., 2013) (Fig 6a.).  In other words, no 
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observations are assimilated in NoDA. 

In the GSI3DVar experiment, the airborne radar data are assimilated by the GSI 

3DVAR method. Fig. (6b) describes the procedures of the GSI3DVar experiment using 

the first TDR mission as an example.  First, 40-member ensemble forecasts are carried 

out for 4 hours initialized from GFS ensemble analyses at 1800 UTC on October 2012.  

Average of the 40 ensemble members become the background at 2200 UTC on October 

25 for the first DA cycle.   Second, single deterministic analysis and forecast cycles 

follow.  Each assimilation cycle ingests tail Doppler radial velocity data contained in 

each penetration leg. The leg-based TDR data assimilation is adopted for Sandy for the 

purpose of better illustrating the increment differences from various experiments. The 

assimilation time is 2200, 2330 UTC October 25, 0030, 0200 UTC October 26, which are 

close to the centers of the penetration legs.  Each data assimilation cycle is done in the 

geographically fixed coordinate rather than in the storm-centered coordinate.   Third, the 

analysis produced at the end of the final assimilation cycle is used to initialize a single 

deterministic forecast. As an initial study, the deterministic forecast is only made to 48 

hours due to the computational limitation. Like NoDA, the HWRF boundary conditions 

for GSI3DVar are also provided by the GFS control forecast. The static background error 

covariance used in this study is from the operational HWRF, which is calculated through 

the NMC method (Parrish and Derber, 1992; Wu et al., 2012). As detailed in Wu et al. 

(2012), the static error covariance derived from this method is suitable for mid-latitude 

synoptic scale systems.  Following Li et al. (2012) and Li (2015), the horizontal and 
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vertical correlation length scales of the default static covariance for GSI 3DVar are tuned 

and reduced by factors of 0.2 and 0.6 respectively to produce the best results for the 

GSI3DVar experiments.   

The procedures in Hybrid-HENS are similar to GSI3DVar.  The primary 

difference is in step 2 where the background covariance is calculated from HWRF’s 

EnKF first guess ensemble rather than a static covariance (Fig.6c).  Unlike GSI3DVar, a 

variational minimization of the hybrid cost function (section 2) is conducted to produce 

the control analysis, which initializes the subsequent control forecast.  For all the Hybrid 

related experiments in this study, horizontal and vertical localization cut-off distances 

(Gaspari and Cohn 1999) are 450 km and 1 scale height respectively.  The details about 

converting between the localization length scale in the e-folding distance used in the 

recursive filter and that in the cut-off distance used in the method by Gaspari and Cohen 

(1999) can be found in equation (4) of Pan et al. (2014).  These values are selected after 

tests with a range of values. In this study, EnKF which provides ensemble covariance to 

Hybrid-HENS had 40 ensemble members.  The inflation factor is implemented to relax 

the posterior ensemble variance to 90% of the prior ensemble variance. The lateral 

boundary conditions are obtained from the GFS hybrid Var-EnKF ensemble forecast 

(Whitaker et al., 2008; Wang et al., 2013).  As in the GSI3DVar experiment, the 

ensemble background for the first data assimilation is initialized by the GFS ensemble 

analyses 6 hours prior to the synoptic times when the TDR data is available. For example, 

for the 00 UTC TDR mission, the background ensemble for the first assimilation is 
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initialized at 18 UTC. This 6-hour spin up time period is consistent with early studies that 

focused on the assimilation of inner core observations.  In early studies, the first 

ensemble background is initialized less than 12 hours before the first assimilation (e.g. 

Zhang et al., 2009; Li et al., 2012; Aksoy et al., 2012; Zhang et al., 2015). Our subjective 

analysis also shows a 6-hour spin up is able to produce flow-dependent TC covariances 

for the first assimilation. For each subsequent HWRF EnKF DA and forecast cycle, the 

40-member background ensemble forecasts are updated by assimilating the tail Doppler 

radial velocity data.  40-member ensemble background forecasts are subsequently 

initialized by the HWRF EnKF analyses.  

As discussed earlier, Hybrid-HENS.5 is designed to reveal the impact of blending 

static covariance and flow-dependent ensemble covariances.  Different from Hybrid-

HENS where a 100% weight is used on the ensemble covariance, Hybrid-HENS.5 blends 

the static covariance and the flow-dependent ensemble covariance by assigning a 50% 

weight on each. Similar blending was used in early hybrid data assimilation studies (e.g., 

Wang et al. 2008ab; Li et al. 2012, etc.) 

Hybrid-GENS follows the same steps as Hybrid-HENS except that in step 2, the 

background covariance is estimated from GFS ensemble perturbations (Fig. 6d).   

Hybrid-HENS-Hrly, Hybrid-HENS.5-Hrly, GSI3DVar-Hrly and Hybrid-GENS-

Hrly share the same steps as Hybrid-HENS, Hybrid-HENS.5, GSI3DVar and Hybrid-

GENS respectively, except assimilating TDR data at hourly frequency and including data 

from both penetration and downwind legs (Fig. 6e, f and g).  
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4. Results for Sandy (2012) 

 

a. Flow dependent and static increment 

As discussed in section 1, ensemble-based DA can use ensemble covariance to 

realistically infer the flow-dependent error statistics among the same variables and cross 

different variables.  Therefore, state variables including those directly and indirectly 

observed can be updated in both dynamically and thermodynamically consistent manners.  

Fig. 7 shows the wind field at 1000 hPa and the sea level pressure (SLP) field before and 

after assimilating the first penetration leg of TDR data during the first P-3 mission of 

Sandy.  The background forecast (Fig. 7a) has a position error with the predicted position 

located to the west of the best track location.  Using the static covariances, GSI3DVar is 

able to relocate the center of the minimum wind speed eastward after assimilating the 

TDR data.  However, the adjustment of the location of the MSLP is not coherent with 

that of the wind field.  Instead, the analyzed MSLP is located to the west of the minimum 

wind speed and still to the west of the best track location.  For Hybrid-HENS, Hybrid-

GENS, which use the ensemble derived covariances, both the centers of MSLP and 

minimum wind speed are consistently adjusted where the two centers are collocated and 

moved toward the best track location as a result of the DA.  Compared to Hybrid-GENS, 

the analyzed TC center by Hybrid-HENS using HWRF’s own EnKF ensemble is closer 

to the best track and the analyzed MSLP is deeper.  The spatial pattern of the analyzed 
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TC by Hybrid-HENS is also less stretched along the North West – South East axis than 

Hybrid-GENS.  With the use of the flow-dependent ensemble covariance, Hybrid-

HENS.5 improves over GSI3DVar as the centers are now more consistently adjusted.  

Specifically, the centers of MSLP and wind speed are more collocated and the analyzed 

MSLP is also deeper than GSI3DVar.  However, due to the use of static error 

covariances, the analyzed center locations remain inconsistent. These results suggest that 

the use of static error covariances is unable to coherently adjust the mass fields 

appropriately for TCs when only the momentum fields are directly observed. This result 

is consistent with what is found in Li et al. (2012), which adopted a different hybrid DA 

system and assimilated different types of observations 

A single-observation experiment is conducted to reveal the fundamental 

difference among the static covariance, HWRF EnKF ensemble covariance and GFS 

ensemble covariance. In this single observation experiment, a 700-mb meridional wind 

observation to the east of the background storm center is assimilated. For consistency, the 

background field is the same as Fig. 7a. The observation increment is 5.0 1ms− .  Fig. 8 

shows the resulting analysis increment of wind and geopotential height at 700hPa by 

using different background error covariances. The wind analysis increment obtained from 

using the static covariance in GSI3DVar (Fig. 8a) shows symmetric features centered 

around the meridional wind observation. The geopotential height increment of GSI3DVar 

(Fig. 8e) shows an east-west symmetric response to the wind increment. This symmetric 

geopotential height increment is largely consistent with the geostrophic and hydrostatic 
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balances, with the geopotential height field decreasing on the left and increasing on the 

right of the northward pointing meridional wind innovation. However, this geostrophic 

adjustment is not consistent with the existence of the TC vortex and its own dynamical 

balance conditions.   

The wind analysis increments obtained from using the ensemble derived 

covariances in Hybrid-HENS (Fig. 8b) show more flow-dependent features appropriate 

for a TC vortex. Specifically, in response to the meridional wind innovation in the east of 

the storm center, a strengthened vortex circulation is produced around the storm center 

with a more realistic cyclonic wind increment pattern.  The inherent scale of the wind 

increment, smaller than the GSI3DVar is also consistent with the background TC. For the 

geopotential height increments (Fig. 8f), the reduced central geopotential height is 

consistent with the enhanced cyclonic wind circulation in respond to the meridional wind 

innovation as indicated from the wind increments of Fig. 8b.  

It is noted that while the maximum value of wind increment is similar between 

GSI3DVar and Hybrid-HENS, the geopotential height increment by GSI3DVar is much 

weaker. Further diagnostics using geostrophic and gradient wind balance equations show 

that the geopotential height gradient increment in response to a 5.0 1ms−  wind increment 

following the geostrophic balance is more than three times less than that following the 

gradient wind balance.  This weakened geopotential height gradient increment implies 

that the cross-variable correlations between mass and wind variables in the static 

background error covariance are not suitable for estimating the error covariance of the 
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TC vortex.  This result further explains why the GSI3DVar analysis cannot achieve the 

dynamic and thermodynamic coherency when only the momentum fields are directly 

observed. 

Compared to GSI3DVar, increments by Hybrid-GENS showed much improved 

flow-dependent structures suitable for a TC (Fig. 8c and 8g).  Fig. 8 however further 

reveals the difference of the error covariances derived from HWRF EnKF and GFS 

ensembles. The wind analysis from Hybrid-HENS using HWRF EnKF ensemble shows a 

location correction while Hybrid-GENS does not. For Hybrid-HENS using the self-

consistent HWRF EnKF ensemble, the geopotential height increment suggests adjusting 

the storm position to the east, consistent with that of the 700-mb wind adjustment. For 

Hybrid-GENS, the geopotential height increment suggests correction of the storm 

position to the east whereas the 700-mb wind increment suggests no position correction. 

This inconsistent pressure and wind increment patterns in terms of storm location 

adjustment in Hybrid-GENS suggest the inconsistent wind and pressure relationship 

described by the GFS ensemble for the TC vortex. In addition, while the magnitude of 

wind increments is similar between Hybrid-HENS and Hybrid-GENS, the geopotential 

height increment by Hybrid-GENS is weaker. Fig. 8b and 8c also shows the correlation 

length scale of Hybrid-HENS is smaller than that of Hybrid-GENS. This result suggests 

that the wind and pressure relationship captured by the GFS ensemble is inconsistent and 

is inferior to the wind and pressure relationship described in the HWRF ensemble.  Such 

inconsistency likely results in the dipole features in the final pressure analysis of Hybrid-
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GENS as shown in section 4c and therefore explains the inferior performance of Hybrid-

GENS than Hybrid-HENS.   

By incorporating the static covariance in the Hybrid-HENS.5 (Fig. 8d and 8h), the 

wind increment patterns have more flow-dependent features in comparison to the 

GSI3DVar.  For example, the wind increment is more cyclonic. Also, the geopotential 

height increment is larger and shows more axisymmetric features (Fig. 8h). In addition, 

the correlation length scale in the Hybrid-HENS.5 is smaller than that value in the 

GSI3DVar. However, the reflected wind and pressure relationship is not as good as using 

the full ensemble.  

Early studies by e.g. Wang et al., 2007a and Wang et al 2009 using a primitive 

equation two layer model have found that blending the static covariance with the 

ensemble covariance can relax the covariance localization applied for the ensemble 

covariance and therefore the resultant analysis is more balanced.  However, in those 

studies, the static covariance is well tuned and is consistent with the large scale dynamics 

in the model.  The benefit of relaxing the localization scale by incorporating the static 

covariance in the hybrid system can be seen for certain fields for hurricanes (not shown).  

However, as discussed in this sub section and shown in the rest of the paper, the static 

covariance reflecting the large scale dynamic and thermodynamic relationship is not 

appropriate for hurricane data assimilation, which explains why including the static 

background error covariance in Hybrid-HENS shows little benefit.  
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Fig. 8 reveals the fundamental differences in the same variable and cross variable 

correlations between the static covariance and ensemble covariances.  Further diagnostics 

based on the spatial distribution of the variance of different error covariances show that 

the static covariance based on the NMC method and used in the operational HWRF has 

larger variances than the ensemble covariance and its spatial distribution is more 

reflective of mid-latitude large scale system rather than a TC (Not shown). The 

diagnostics suggest that further development of the static variance may be needed to 

optimize its usage in the hybrid DA. 

 

b. Verification against independent flight level and SFMR wind observations 

The in-situ measurements made by the NOAA P-3 aircraft and the Stepped 

Frequency Microwave Radiometer (SFMR) retrieved surface wind speeds provides 

independent observations to verify the simulated TC inner-core structures.  Several early 

studies used similar types of data for verification (e.g., Weng and Zhang 2012; Aksoy et 

al. 2013).  The results for the first and last data assimilation corresponding to the first and 

last penetration flight legs of the first TDR mission are discussed for Sandy in this 

section.  Systematic verification against these observations is documented in section 5. 

Fig. 9 and 10 compare the surface wind speeds, derived from GSI3DVar, Hybrid-

HENS, Hybrid-GENS and that observed by the SFMR on board of the P3.  The wind 

speeds from the model are interpolated to the observation location at 2200 UTC 25 

October for the first penetration leg (Fig. 9) and 0200 UTC 26 October 2012 for the 4th 
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penetration leg (Fig. 10).  In Fig. 9, the lowest wind speed indicates the along-track wind 

minimum captured by the observation. The flight track is overlaid on the corresponding 

analyses in Fig. 7.  For the first DA cycle ingesting the first penetration leg of TDR data, 

the first guess misplaces Sandy by 80 km and the corresponding peak wind is also weaker 

and broader.  After assimilating the TDR data, the along-track wind minimum is 

corrected to the location nearly consistently with that identified by the SFMR wind speed 

observations for Hybrid-HENS and Hybrid-GENS.  The location of the peak wind, 

especially along the west side of the penetration leg, is also nearly consistent with the 

SFMR wind.  Hybrid-HENS fits the SFMR wind more closely than Hybrid-GENS.  

Specifically, the analysis from Hybrid-GENS has a relatively broader peak on the west 

side of the penetration leg than Hybrid-HENS. The minimum wind speed in Hybrid-

HENS fits the SFMR more closely than Hybrid-GENS.  GSI3DVar over corrects the 

location and therefore fit the SFMR the worst. The fit of Hybrid-HENS.5 to SFMR is 

worse than to that of Hybrid-HENS. 

Fig. 10 shows the comparison at the final data assimilation cycle ingesting the last 

penetration leg of TDR data. The flight track is overlaid to the corresponding analyses in 

Fig. 11.  Without assimilating the TDR data, wind speed from NoDA is out of phase 

compared to the SFMR observations.  First guess surface wind fields from all 

experiments assimilating TDR data show improved fit to SFMR wind observations after 

assimilating TDR data in previous cycles except GSI3DVar, suggesting the positive 

impact of assimilating TDR data if using ensemble covariances to estimate background 
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error covariances.  First guess surface wind from Hybrid-HENS fits SFMR wind the best.  

The vortex in Hybrid-GENS first guess field is weaker than the SFMR wind and that of 

Hybrid-HENS, with relatively weak peak wind.  Using static covariance, the first guess 

from Hybrid-HENS.5 is comparable or slightly worse than Hybrid-HENS.  After 

assimilating the last penetration leg of the TDR data, analysis from Hybrid-HENS and 

Hybrid-GENS both improve their fits to the SFMR wind.  In comparison, the analysis 

from GSI3DVar fits SFMR wind observation worse compared to not assimilating the last 

penetration leg of TDR data.  Verification against flight level wind observations show 

similar results (not shown).  These results in Fig. 9-10 together with results in Fig. 7-8 

suggest the impact of assimilating the TDR data can be highly dependent on the type of 

background error covariance.  Positive impacts of assimilating TDR are consistently 

found when using ensemble-estimated error covariances in data assimilation.  In 

comparison, the use of the full static covariance can lead to weak positive and some 

negative impacts from data.  Within the methods of using ensembles in data assimilation, 

using self-consistent HWRF EnKF ensemble is able to best extract the information to 

produce most accurate storm structure and therefore produces the largest amount of 

positive impact of the TDR data.  

 

c. Analyzed tropical cyclone structure 

The structure of the TC simulated by different data assimilation methods is further 

examined by comparing the analyses at the end of the data assimilation cycles with the 
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radar wind analyses produced by the NOAA Hurricane Research Division (HRD).  The 

HRD radar wind analyses are derived by compositing quality controlled TDR radial 

velocity data (Gamache, 2005; HRD radar wind data can be found: 

http://www.aoml.noaa.gov/hrd/Storm_pages/sandy2012/radar.html).  Fig. 11 shows the 

HRD radar wind analysis and the model-derived wind at 1km height.  Radar wind 

analysis showed two (inner and outer) wind maximum bands in the northwest and north 

quadrants with a wind maximum about 45-50 1ms− .  The storm center for NoDA is about 

80 km away from the best track position.  After assimilating the TDR data, in the final 

analysis, the storm center for all experiments assimilating the TDR data is much closer to 

that of the best track, resulting in a 75% reduction of position error.   

The major difference among the experiments assimilating TDR is the depiction of 

the storm structure.  Rather than concentrating wind maxima in the north and northwest 

quadrants, GSI3DVar has multiple spurious large-wind regions.  For example, a wind 

speed greater than 60 1ms−  is in the southeast and south quadrants, which is absent in the 

HRD wind analyses.  The structure of the storm including both max wind speed and 

spatial distribution of the wind speed in Hybrid-GENS is much improved compared to 

GSI3DVar.  Compared to the radar wind analysis, wind speed of Hybrid-GENS is still 

too strong especially over the northwest quadrant.  Hybrid-HENS compares most closely 

with the HRD radar wind analysis.  Compared to Hybrid-GENS, Hybrid-HENS shows 

more detailed structures such as the northeast-southwest elongated wind speed minimum 

center and details of two banded wind maxima. In addition, in Hybrid-GENS, there is a 
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secondary minimum in the pressure analysis to the west of the storm center.  Compared 

to Hybrid-HENS, the ensemble in Hybrid-GENS is at a coarser resolution and is 

produced independently by another model.  To isolate the impacts of these two 

differences, another hybrid experiment is conducted.  This experiment is configured the 

same as Hybrid-HENS except that the HWRF EnKF ensemble is at coarser resolution 

similar to the GFS. It is found that with the coarse-resolution, Hybrid-HENS still does not 

show such dipole features (Not shown). This result implies that the coarse-resolution is 

not the main issue that results in the unrealistic pattern in Hybrid-GENS. Therefore, such 

unrealistic pattern is likely due to the inconsistency of using GFS ensemble to estimate 

the HWRF background forecast error covariance.  For example, based on the discussions 

from section 4a, it is likely that the wind and pressure relationship described by the GFS 

ensemble is inconsistent with wind and pressure relationship from the HWRF first guess.  

Involving ensemble in Hybrid-HENS.5 improves the wind speed pattern as compared to 

the GSI3DVar.  However, the analyzed wind field by Hybrid-HENS.5 still has spuriously 

large wind maximum centers resembling that of GSI3DVar. Among all data assimilation 

experiments, Hybrid-HENS shows the largest positive impact of the TDR data in 

analyzing the structure of Sandy. 

Fig. 12 shows the south-north vertical cross section of horizontal wind speed.  

Radar wind analysis indicates a northward tilted eye and a maximum wind speed of 40-

45 1ms−  to the north of the eye between 1 km and 2 km.  The simulated eye in NoDA is 

upright instead of being tilted.  As in Fig. 11, GSI3DVar has multiple spurious maxima 
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with values larger than that in radar wind analysis.  Although there is an indication of tilt, 

the simulated eye in GSI3DVar is wider than the HRD radar wind analyses.  Using GFS 

ensemble in the assimilation, Hybrid-GENS improves the depiction of the vertical 

structure of the storm compared to GSI3DVar.  Specifically, the magnitude of wind 

maxima at low levels matches the radar wind analysis much closely and the upper level 

wind maxima become much smaller or non-existent.  Compared to Hybrid-GENS, 

Hybrid-HENS simulated storms show much more detailed structure that better matches 

the radar wind analysis.  For example, the separation of wind maxima to the north of the 

storm is closer to the HRD wind analyses whereas such separation is larger in Hybrid-

GENS. The northward tilted eye is narrower than Hybrid-GENS, better fitting the HRD 

wind analysis.  Hybrid-HENS.5 improves the analyzed vertical structure compared to 

GSI3DVar.  However, spurious wind maxima still exists at upper levels on the north side 

of the storm.  In summary, Fig. 11 and 12 suggest that using flow dependent ensemble 

covariance even from the independently generated GFS ensemble improves the analysis 

of the storm structure.  Using self-consistent HWRF ensemble provides further 

improvements.  Assimilating TDR data using ensemble-based covariance improves both 

the analyzed location and storm structure.  The information in TDR data is best used by 

Hybrid-HENS compared to other data assimilation methods.   

To quantitatively compare the analyzed 3-dimensional TC structure and the HRD 

radar wind analysis, spatial correlation of the analyzed 3D wind speed field is computed 

and shown in Fig. 12.  The analyzed field is relocated so that the center of the analyzed 
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field is consistent with that of the radar wind analysis.  Such reposition is to fulfill the 

goal of only comparing the TC structure isolating the impact of location.  Among Hybrid-

HENS, Hybrid-HENS.5, Hybrid-GENS and GSI3DVar, Hybrid-HENS shows the highest 

correlation coefficient value of 0.71 averaged over 7 missions.  GSI3DVar has the worst 

coefficient of 0.58. 

     

d. Verification of track, MSLP and maximum wind forecasts  

The track, MSLP and Vmax forecasts are verified against the best track data for 

all seven TDR missions for Sandy.  The blue lines in figure 2 show the forecasts 

initialized by Hybrid-HENS.  The performance of track, MSLP and Vmax forecasts by 

Hybrid-HENS are compared with GSI3DVar, Hybrid-GENS and Hybrid-HENS.5 for 

Sandy.  The results (not shown) are briefly described below.  Systematic comparison 

among different methods using all TDR cases during 2012-2013 including Sandy will be 

shown and discussed in details in section 5.  Briefly, for Sandy, compared to GSI3DVar, 

Hybrid-HENS shows smaller errors in track forecasts.  Hybrid-HENS however does not 

show consistent improvement over GSI3DVar in MSLP and Vmax forecast except at 

early forecast lead times.  The use of consistent HWRF ensemble in Hybrid-HENS 

produces better track forecast compared to the use of GFS ensemble in hybrid (Hybrid-

GENS) and does not show consistent improvement for MSLP and Vmax forecast.  

Compared to Hybrid-HENS, the use of static covariance in hybrid (Hybrid-HENS.5) 

improves the Vmax forecast and does not show consistent improvement for track and 
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MSLP forecasts.   The experiments are therefore extended to other cases during 2012-

2013 seasons. 

 

5. Results for hurricanes surveyed by NOAA P3 Tail Doppler Radar during 2012-

2013 seasons 

During the 2012-2013 Atlantic hurricane seasons, NOAA surveyed the following 

hurricanes with the TDR on board of the P3 aircrafts: 9 missions for Isaac (00 UTC 

August 23-12 UTC August 24 in 2012; 00 UTC August 27-00 UTC August 29 in 2012), 

2 missions for Leslie (12 UTC September 7 - 00 UTC September 8 in 2012), 7 missions 

for Sandy (00 UTC October 26 - 00 UTC October 29 in 2012), 5 missions for Ingrid (00 

UTC September 14 - 00 UTC September 16 in 2013) and 4 missions for Karen (00 UTC 

October 4 - 12 UTC October 5 in 2013). The case details and the number of TDR data 

assimilated can be found in Table 2.  Experiments are carried out for all these cases to 

further address the scientific questions proposed in section 1.  The student t-test 

(Klotzbach and Gray, 2009) is performed to examine the statistical significance of the 

differences among the experiments.  Significance test using the Bootstrap resampling 

(Wang and Bishop, 2005) is also conducted and the results (not shown) are consistent 

with the t-test results. 

In the experiments for Sandy, for the purpose of illustrating the differences of 

increments from various background error covariances, each DA window is 

approximately centered around the middle of the penetrating leg and only the TDR data 
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corresponding to the penetrating leg is assimilated.  Similar method was used by early 

studies such as Zhang et al (2011) and Weng and Zhang (2012).  This approach neglects 

the data corresponding to the downwind legs and requires pre-determining the beginning 

and ending times of each flight leg which are often irregular.   For systematic studies 

involving multiple cases or for operational implementation, using DA windows with a 

regular and fixed length is more convenient and ingests TDR data from all flight legs.   

This approach was also used by early studies such as Aksoy et al. (2012) and Aksoy 

(2013). Fig. 13 shows there are no statistically significant differences between the leg-by-

leg assimilation and the hourly assimilation in track, Vmax and MSLP forecasts for 

Hybrid-HENS.   Consistently, structure for Sandy (Fig. 11g and Fig. 12g) simulated in 

the final analyses by Hybrid-HENS-Hrly and Hybrid-HENS both compare favorably with 

the HRD radar wind analysis. The correlation coefficient between the analyzed structure 

and the HRD radar wind analysis by Hybrid-HENS-Hrly is only slightly higher than 

Hybrid-HENS. Therefore, in this section where systematic studies with multiple cases are 

performed, the TDR data is assimilated with a fixed, one-hour window, in which both 

penetration and downwind observations are ingested. Aksoy (2013) suggested that the 

storm-relative rather than earth-relative observation framework can lead to more 

homogenized impact of the penetrating and downwind legs and therefore potentially 

improve extracting the information from the TDR observations. Applying this approach 

may therefore further improve the analysis and forecast for Hyrid-HENS-Hrly.  The 
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impact of the storm relative observation framework in a hybrid DA system and the 

optimal assimilation window length will be left for future studies.   

 

a. Impact of inclusion of static covariance on track, MSLP and Vmax forecasts 

The impact of the static covariance in the hybrid data assimilation for hurricane 

analysis and forecast assimilating airborne radar data is addressed.   Fig. 13 shows the 

mean errors of forecasts of all the TDR missions during 2012-2013 seasons comparing 

the hybrid without static covariance (Hybrid-HENS-Hrly) and the hybrid where 50% 

weight is given to the static covariance (Hybrid-HENS.5-Hrly).  Compared to Hybrid-

HENS-Hrly, Hybrid-HENS.5-Hrly degrades the track forecasts (Fig. 13a) and MSLP 

forecast (Fig. 13b). For example, Hybrid-HENS-Hrly demonstrates statistically 

significant better track forecasts at almost all lead times except the 24 hour and better 

MSLP forecasts at 6-18 and 42-48 hour lead times than Hybrid-HENS.5-Hrly. However, 

there are more instances that Hybrid-HENS.5-Hrly produces more accurate Vmax 

(Fig.13c) forecasts than Hybrid-HENS-Hrly. Early studies have shown and indicated that 

when ensemble size was small, or model error was big or the ensemble was run at a 

reduced resolution, the inclusion of static covariance would improve the performance of 

the hybrid.  These studies mostly focused on coarse-resolution or large-scale applications 

(e.g., Wang et al. 2007a, 2009, 2013).  As discussed in section 4a, although the static 

covariance is tuned to improve the GSI3DVar experiments, inherent deficiencies of the 

static error covariances such as inappropriate wind and mass relationship for hurricane 

This article is protected by copyright. All rights reserved.



 34 

applications can overwhelm its potential advantages in the current study. This result is 

consistent with Li et al. (2012) which applied a different hybrid DA method assimilating 

ground-based radar data for a single hurricane case. 

 

b. Impact of flow dependent ensemble covariance and dependence of TDR data impact 

on DA methods 

This sub-section focuses on addressing the impact of using different sources of 

ensemble perturbations and the dependence of the TDR data impact on different DA 

methods using cases during 2012-2013 seasons. Fig. 14a shows the mean error of track 

forecasts for NoDA, GSI3DVar-Hrly, Hybrid-HENS-Hrly and Hybrid-GENS-Hrly. 

Among all the experiments, hybrid using HWRF’s own EnKF ensemble (Hybrid-HENS-

Hrly) produces the smallest track errors.  T-test shows that the improvement of Hybrid-

HENS-Hrly relative to NODA, GSI3DVar-Hrly and Hybrid-GENS-Hrly is statistically 

significant for most of the lead times up to the 48-hour.  The improvement of Hybrid-

GENS-Hrly relative to GSI3DVar-Hrly is statistically significant at 0-12 and 30-36 hour 

lead times. Compared to GSI3DVar-Hrly, Hybrid-HENS-Hrly ingesting both the GFS 

ensemble and the HWRF EnKF ensemble improves the track forecasts, suggesting the 

positive impacts of using flow-depend ensemble covariance in data assimilation.  

Compared to Hybrid-GENS-Hrly, Hybrid-HENS-Hrly produces more accurate track 

forecasts, suggesting further improvement by ingesting the self-consistent, flow-

dependent HWRF EnKF ensemble.  Compared to NoDA, both Hybrid-GENS-Hrly and 
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Hybrid-HENS-Hrly demonstrate positive impact of assimilating the TDR data in general.  

In comparison, assimilating the TDR data using GSI3DVar demonstrates negative 

impacts after the first couple of hours of forecasts.  

For the MSLP forecasts in Fig. 14b, both Hybrid-HENS-Hrly and Hybrid-GENS-

Hrly produce more accurate forecasts compared to GSI3DVar-Hrly for the first 24-36 

hours suggesting the need of using flow dependent covariance to assimilate inner core 

data to improve MSLP forecasts. The improvements by Hybrid-HENS-Hrly and Hybrid-

GENS-Hrly are statistically significant at 0-18 hour and 12-24 hour lead times 

respectively. Ingesting HWRF EnKF ensemble demonstrates statistically significant 

improvement relative to ingesting GFS ensemble for the MSLP forecasts at 0-12 and 48 

hour lead times and degrades the performance at 24-30 hour lead times.  Like the track 

forecasts, TDR data assimilated by Hybrid-GENS-Hrly and Hybrid-HENS-Hrly 

demonstrates positive impact compared to the experiments without assimilating the TDR 

data. For example, Hybrid-HENS-Hrly demonstrates statistically significant better MSLP 

forecasts than NoDA for all lead times up to 48 hours except the 18 hour.  For the 

maximum wind forecasts (Vmax, Fig. 14c), Hybrid-HENS-Hrly and Hybrid-GENS-Hrly 

produce consistently more accurate forecasts compared to GSI3DVar-Hrly after the first 

18 hours, although the improvement is not as apparent or statistically significant as the 

track and MSLP forecasts.  Assimilating the TDR data using Hybrid-HENS-Hrly and 

Hybrid-GENS-Hrly still in general demonstrate positive impact of the data for the Vmax 
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forecasts compared to not assimilating the TDR data (NoDA) with four lead times, 0, 12, 

36 and 48 hour, showing statistical significance.   

Following the same method of quantitatively verifying the analyzed TC structures 

for Sandy (2012) (section 4d), the correlation coefficients between the analyses and the 

HRD radar composites are calculated (Fig.15) for Hybrid-HENS-Hrly, Hybrid-GENS-

Hrly and GSI3DVar-Hrly.  A higher correlation coefficient indicates that the analyzed 

structures are more consistent with the HRD radar wind composites.  For all the TDR 

missions during 2012-2013 seasons1, the hybrid system ingesting the GFS ensemble 

shows a higher correlation (0.610) than GSI3DVar-Hrly (0.431) on average.  Ingesting 

self-consistent HWRF EnKF ensemble, the analyzed TC structure by Hybrid-HENS-Hrly 

is even more consistent with the HRD radar wind composite with the Hybrid-HENS-Hrly 

shows a higher correlation (0.665) than the Hybrid-GENS-Hrly (0.610) on average. The 

statistical t-test shows that both improvements are significant at a confidence level of 

99%.These results suggest the importance of using flow-dependent covariances, in 

particular, the consistent HWRF ensemble in assimilating inner core observations for TC 

analysis.  

The impact of using various sources of flow dependent covariances is further 

explored by quantitative verifications of the first guess and analysis against independent 

observations.  Fig. 16 shows the root mean square fit of the first guess and analysis to 

                                                        
1 HRD composites for the 3rd mission of Karen 2013 and the 3rd mission of Ingrid 2013 
were not available. 
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SFMR and flight level wind for all TDR missions during 2012-2013 seasons. The RMS 

fit is calculated by removing the bias following Aksoy et al. (2009). For both the fits of 

first guess and analysis to SFMR and flight level wind, Hybrid-GENS-Hrly improved 

upon GSI3DVar-Hrly. The statistical t-test shows that Hybrid-GENS-Hrly is significantly 

better than GSI3DVar-Hrly at a confidence level of 99% for both fist guess and analysis 

in both the SFMR and flight level wind verifications. Using the HWRF EnKF ensemble, 

Hybrid-HENS-Hrly further improves the fit to these independent observations relative to 

using the GFS ensemble.  The statistical t-test shows that Hybrid-HENS-Hrly is 

significantly better than Hybrid-GENS-Hrly at a confidence level of 99% for the analysis 

in both the SFMR and flight level wind verifications. The confidence level for the first 

guess of Hybrid-HENS-Hrly is significantly more accurate than Hybrid-GENS-Hrly at 

95% confidence level for the flight level wind verification and is not significantly better 

than Hybrid-GENS-Hrly for the SFMR verification. The inferior performance of Hybrid-

GENS-Hrly relative to Hybrid-HENS-Hrly is likely because the GFS ensemble does not 

best reflect the error covariance in the HWRF control forecast.  By design, GFS ensemble 

is to sample the first guess errors in the GFS data assimilation system, which used 

different model, different resolution and assimilated different observations compared to 

the HWRF system.  Nevertheless, Hybrid-GENS-Hrly is still able to improve upon 

GSI3DVar-Hrly using the static covariance, which suggests that although there are 

deficiencies in using the GFS ensemble for the HWRF hybrid data assimilation system, 

there is still useful information within the GFS ensemble as indicated when comparing 
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the results from the static covariance experiments.  For instances when computing 

resources are limited and the HWRF’s own EnKF ensemble are not generated, the use of 

the GFS ensemble provides a quick and inexpensive fix to the static covariance.   

 

6. Summary and Conclusion  

The GSI-based hybrid EnKF-Var data assimilation system is extended for HWRF 

for the initialization and prediction of TCs.  The hybrid method is then applied for the 

assimilation of airborne radar data for the first time. In this paper, methods describing the 

newly developed GSI-based ensemble-variational hybrid data assimilation for HWRF 

assimilating airborne radar observations are first described using a detailed study of 

Sandy (2012), followed by systematic comparison of various sensitivity experiments for 

multiple cases during 2012-2013 seasons. Using the newly developed system, the impact 

of using variously estimated background error covariances on TC core analyses and on 

subsequent forecasts assimilating the airborne radar observation is studied. 

In the GSI-based hybrid DA system for HWRF, both the EnKF and the extended 

control variable components which are interfaced with GSI (Whitaker et al. 2008; Wang 

2010; Wang et al. 2013) are expanded to HWRF. The EnKF ensemble covariance is 

incorporated into the GSI variational minimization through the use of extended control 

variables (Wang, 2010).  Further, the data thinning method in GSI is further enhanced for 

the tail Doppler radar where the fore and aft sweeps are separated when thinning is 

performed to maintain the dual Doppler information.   
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  The tail Doppler radar radial velocity data onboard of NOAA P-3 are assimilated. 

Experiments addressing the impact of various error covariances as outlined in section 1 

are designed.  Experiment “NoDA” is first conducted without assimilating any radar data.  

Experiment “GSI3DVar” adopts the GSI 3DVar where the full static covariance is used. 

Experiment “Hybrid-GENS” ingests flow-dependent background covariance from 

independently generated GFS ensemble. In comparison, in experiment “Hybrid-HENS”, 

the hybrid DA system ingests fully flow-dependent background error covariance 

provided by HWRF EnKF. Experiment “Hybrid-HENS.5” incorporates half static 

covariance and half HWRF ensemble covariance. Finally, systematic experiments are 

made assimilating TDR data at hourly frequency (Hybrid-HENS-Hrly, Hybrid-HENS.5-

Hrly, Hybrid-GENS-Hrly and GSI3DVar-Hrly).  

  Although only radar wind is assimilated, detailed study for Sandy shows that 

Hybrid-HENS, Hybrid-GENS, using flow-dependent ensemble covariance, is able to 

adjust both the wind and mass field to match the best track position in a more 

dynamically and thermodynamically coherent fashion.  Using the static covariance, 

adjustment of mass and momentum field by GSI3DVar follows more in the line of large 

scale flow with approximate geostrophic balance, which is not suitable for TC inner core.  

The wind and pressure relation in the covariances derived from the GFS ensemble 

improves upon that of the static covariance, but is still inferior compared to that of 

HWRF.  

Verification of first guesses and analyses against independent flight level and 
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SFMR observations is made for both Sandy and other TDR cases during 2012-2013 

seasons.  Using the GFS ensemble in data assimilation, first guesses and analyses from 

the hybrid system fit the independent observations much closer than 3DVar using static 

covariance.  Using HWRF’s own EnKF ensemble, fits of first guesses and analyses from 

the hybrid system to SFMR and flight level wind data are improved further compared to 

using the GFS ensemble.   

The structure of the TC simulated by different data assimilation methods is further 

examined by comparing the analyses at the end of the data assimilation cycles with the 

radar wind analyses produced by the NOAA Hurricane Research Division (HRD) for 

both Sandy and other TDR cases during 2012-2013 seasons.  Hybrid-HENS using both 

GFS ensemble and HWRF’s own EnKF ensemble better correlates with the HRD radar 

wind analysis compared to 3DVar.  Hybrid-HENS ingesting HWRF’s own EnKF 

ensemble compares more closely with the HRD radar wind analysis than the hybrid 

ingesting GFS ensemble.  Examining the results of Sandy in details shows that 3DVar 

depicts multiple spurious wind maxima, deviating from the radar wind analysis the most.  

For the hybrid ingesting GFS ensemble, there is a secondary minimum in the pressure 

analysis.  Further experiments and diagnostics show that such unrealistic pattern is likely 

due to the inconsistency of using GFS ensemble to estimate the HWRF background 

forecast error covariance.   

Track, MSLP and Vmax forecasts are verified against the best track data for TDR 

cases during 2012-2013 seasons. Compared to 3DVar, the hybrid ingesting both the GFS 
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ensemble and the HWRF EnKF ensemble improves the track forecasts, suggesting the 

positive impacts of using flow-depend ensemble covariance in data assimilation.  

Compared to hybrid using GFS ensemble, hybrid using HWRF EnKF ensemble produces 

more accurate track forecasts, suggesting further improvement by ingesting the self-

consistent, flow-dependent HWRF EnKF ensemble.  For the MSLP forecasts, hybrid 

using both GFS ensemble and HWRF EnKF ensemble produces more accurate forecasts 

compared to GSI3DVar for the first 24-36 hours suggesting the need of using flow 

dependent covariance to assimilate inner core data to improve MSLP forecasts. 

Compared to ingesting GFS ensemble, ingesting HWRF EnKF ensemble improves the 

MSLP forecasts at 0-12 and 42-48 hours but degrades the forecast at 24-36 hours.  For 

the maximum wind forecasts, hybrid using both GFS ensemble and HWRF EnKF 

ensemble produces consistently more accurate forecasts compared to 3DVar after the first 

18 hours, although the improvement is not as apparent as the track and MSLP forecasts.   

Detailed study of Sandy reveals that compared to GSI3DVar, the hybrid system 

incorporating the flow dependent HWRF EnKF ensemble with a 50% weight depicts 

more realistic analysis increments, better fit to flight level and SFMR wind and compared 

more favorably with the HRD radar wind composite. The same configuration also 

produces better track, MSLP and Vmax forecasts compare to GSI3DVar for all TDR 

cases during 2012-2013 seasons.  Blending the static covariance with the ensemble 

covariance does not show apparent improvement in these verifications over the 

experiment where only pure ensemble is used except that there are more instances that 
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the blending produces more accurate Vmax. 

The impacts of assimilating the TDR data at hourly frequency (named Hybrid-

HENS-Hrly) are compared with the leg by leg assimilation (Hybrid-HENS). For the 

hourly assimilation, the data falling into the hourly window are included for assimilation 

and therefore there is no need to determine the beginning and ending times of the flight 

leg.  Although additional downwind-leg information is added in the hourly assimilation, 

no distinct differences between the leg-by-leg assimilation and the hourly assimilation are 

found in track, Vmax and MSLP forecasts for Hybrid-HENS. This could be attributed to 

the lack of efficient usage of the downwind-leg information. The “storm-relative 

observation strategy” proposed by HRD can be a potential tool to help further improve 

the usage of TDR data. 

Diagnostics of analysis increment, verification against independent flight level 

and SFMR wind observations and HRD radar wind composite reveals that the impact of 

TDR observations can be highly dependent on the type of background error covariance.  

Using self-consistent HWRF EnKF ensemble is able to best extract the information to 

produce most accurate storm structure and therefore produce the largest amount of 

positive impact of the TDR data on the analysis and forecast.  In comparison, traditional 

GSI 3DVar method shows negative impact of assimilating the TDR data in analyzing the 

structure of the TC and demonstrates negative impacts after the first couple of hours of 

forecasts. 

Research and development are ongoing to include other observational data in 
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addition to the TDR data and to further extend the system with higher resolution moving 

nests and dual resolution DA capabilities, which will be documented in future papers. 

This study, using the new hybrid DA system, focuses on exploring the impact of various 

error covariances on TC core analysis and on subsequent forecasts.  Comparison of 

different ensemble data assimilation algorithms such as the hybrid and the pure EnKF for 

hurricane prediction requires carefully designed experiments, which is an interesting 

topic for future studies. 
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Table captions 
 
Table 1 List of experiments and their descriptions. 
 
Table 2 List of cases and mission times and the TDR data assimilated at each times.  
 
Figure captions 
 
Fig. 1 Flow chart of GSI based EnKF-Variational hybrid data assimilation system for 

HWRF (adapted from Wang et al. 2013). 

 

Fig. 2 a) Track, b) minimum sea level pressure and c) maximum wind obtained from best 

track data for Sandy (2012) during October 26 – October 31 in 2012 (Black). Red lines 

are operational HWRF forecasts initialized every 12 hours from 00UTC October 26 to 

00UTC October 29 in 2012 corresponding to each TDR mission. Blue lines are 

corresponding Hybrid-HENS forecasts. Dash lines show the forecasts for each TDR 

mission and solid lines show the average of forecasts valid at the same time. The starting 

and ending point of the forecast from each mission is marked with the mission number. 

 

Fig. 3 Flight tracks (blue line) and horizontal distribution of airborne radar data (grey dot) 

for 7 NOAA P3 tail Doppler radar missions. The black line is the best track from NHC.  

 

Fig. 4 An example of a Tail Doppler Radar fore scan sweep. The radar is pointing to the 

east. U, N, D and S stand for the upward, northward, downward (ocean surface) and 

southward directions, respectively. The radar scans counterclockwise from U to N to D to 
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S and back to U.  The negative values in blue mean wind towards the radar, and the 

positive values in red mean wind away from the radar. The radar is scanning a southerly 

wind. 

 

Fig. 5 Vertical distribution of the number of Tail Doppler Radar data collected during the 

first NOAA P3 mission of Sandy around 00 UTC on Oct. 26th, 2012. 

 

Fig. 6  The flow charts for a) NoDA, b) GSI3DVar, c) Hybrid-HENS, Hybrid-HENS.5, 
d) Hybrid-GENS, e) Hybrid-HENS-Hrly, Hybrid-HENS.5-Hrly f) Hybrid-GENS-Hrly 
and g) GSI3DVar-Hrly experiments.  
 

Fig. 7 1000hPa wind speed (shaded) and SLP (contour) for  a) background first guess, 

and analysis after assimilating the first penetration leg of TDR data for b) GSI3DVar, c) 

Hybrid-HENS, d) Hybrid-GENS and e) Hybrid-HENS.5 experiments. The blue dot is the 

best track storm location at 2200Z on Oct. 25th. The black line denotes the corresponding 

flight track associated with the first assimilated penetration leg. 

 

Fig. 8 The analysis increment of a) ~ d) wind (purple vector and shaded, 1ms− ) and e) ~ 

h) geopotential height (shaded, m) at 700hPa by assimilating a meridional wind 

observation at the black dot position. The observation is 5 1ms−  larger than the 

background state. The black contour indicates the background sea level pressure. The 

analysis increment is computed using a), e) GSI3DVar, b), f) Hybrid-HENS, c), g) 
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Hybrid-GENS, d), h) Hybrid-HENS.5.   

 

Fig. 9 SFMR wind speed observation (black) along the flight track during the first 

penetration leg of TDR observation. The x axis is the distance from the starting point of 

the leg. The green line is the first guess and the red line is the analysis along the same 

flight track for a) GSI3DVar, b) Hybrid-HENS, c) Hybrid-GENS, d) Hybrid-HENS.5 

experiments. The values in the parenthesis indicate the RMS fit of the analysis and first 

guess to the observation. 

 

Fig. 10 Same as Fig 9 except for assimilating the last penetration leg of TDR data.  

Results for NoDA experiment is also included in e). 

 

Fig. 11 Wind (shaded and vector) and pressure (contour) at 1km height for a) HRD radar 

wind composite, b) GSI3DVar, c) NoDA, d) Hybrid-HENS, e) Hybris-GENS, f) Hybrid-

HENS.5 and g) Hybrid-HENS-Hrly. Black dot is the interpolated best track position. The 

blue line denotes the corresponding flight track associated with the last assimilated 

penetration leg. The red line denotes the corresponding cross-sections to be presented in 

Fig. 12. 

 

Fig. 12 Wind (shaded), potential temperature (solid line) and relative humidity (dash line) 

of the south to north vertical cross section for a) HRD radar wind composite, b) 
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GSI3DVar, c) NoDA, d) Hybrid-HENS, e) Hybris-GENS, f) Hybrid-HENS.5 and g) 

Hybrid-HENS-Hrly. 

 

Fig. 13 a) Track, b) SLP and c) Vmax Mean Error statistics for Hybrid-HENS (green 

solid), Hybrid-HENS.5-Hrly (light blue dash) and Hybrid-HENS-Hrly(dark blue solid) 

experiments during 2012-2013 seasons. The light blue dots above the x axis denote that 

the Hybrid-HENS-Hrly is significantly better than Hybrid-HENS.5-Hrly at a confidence 

level greater than 90%. The light blue crosses above the x axis denote that the Hybrid-

HENS.5-Hrly is significantly better than Hybrid-HENS-Hrly at a confidence level greater 

than 90%.   

 

Fig. 14 a) Track, b) SLP and c) Vmax Mean Error statistics for Hybrid-HENS-Hrly (blue 

solid), Hybrid-GENS-Hrly (green dash), NoDA (orange solid) and GSI3DVar-Hrly (light 

blue solid) experiments during 2012-2013 seasons. The light blue, orange, and green dots 

above the x axis denote that the Hybrid-HENS-Hrly is significantly better than 

GSI3DVar-Hrly, NoDA, Hybrid-GENS-Hrly at a confidence level greater than 90%, 

respectively. The green crosses right above the x axis denote that the Hybrid-GENS is 

significantly better than GSI3DVar at a confidence level greater than 90%. 

 

Fig. 15 Correlation coefficient values for all missions during 2012-2013 seasons for 

Hybrid-HENS-Hrly (Blue), GSI3DVar-Hrly (Red) and Hybrid-GENS-Hrly (Purple) 
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against HRD composite. The values in the parenthesis denote the average values of all 

cases for each experiment.  

 

Fig. 16 Independent verification of analyses (blue) and first guess (red) against a) SFMR 

and b) Flight Level data for experiments during 2012-2013 seasons for Hybrid-HENS-

Hrly, GSI3DVar-Hrly and Hybrid-GENS-Hrly experiments. 
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Table 1 List of experiments and their descriptions.  
Experiment name Description 
NoDA No airborne radar data assimilation. HWRF forecast 

initialized from GFS analysis. 
GSI3DVar Assimilate airborne radar data using GSI 3DVar with static 

covariance.  
Hybrid-HENS Assimilate airborne radar data using the newly developed 

self-consistent EnKF-Var data assimilation system for 
HWRF.  HWRF ensemble initialized from HWRF’s EnKF 
was ingested in the hybrid.  A full weight was given to the 
ensemble covariance. 

Hybrid-HENS.5 Same as Hybrid-HENS except equal weights were given to 
the static and ensemble covariances. 

Hybrid-GENS Assimilate airborne radar data using the HWRF hybrid 
ingesting GFS ensemble. 

Hybrid-HENS-Hrly Same as Hybrid-HENS except assimilating airborne radar 
data at hourly frequency and including both penetration and 
downwind leg data. 

Hybrid-HENS.5-Hrly Same as Hybrid-HENS.5 except assimilating airborne radar 
data at hourly frequency. 

GSI3DVar-Hrly Same as GSI3DVar except assimilating airborne radar data at 
hourly frequency  

Hybrid-GENS-Hrly Same as Hybrid-GENS except assimilating airborne radar 
data at hourly frequency. 
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Table 2 List of cases and mission times and the TDR data assimilated at each times.  

Storm 
name 

Mission 
time 

Number of 
TDR 

assimilated 

Storm 
name 

Mission 
time 

Number of 
TDR 

assimilated 

Storm 
name 

Mission 
time 

Number of 
TDR 

assimilated 

Isaac 

00 UTC 23 
Aug 2012 

45727 
Leslie 

12 UTC 07 
Sep 2012 

7996 

Ingrid 

00 UTC 14 
Sep 2013 

19618 

12 UTC 23 
Aug 2012 

45940 
00 UTC 08 
Sep 2012 

14425 
12 UTC 14 
Sep 2013 

26472 

00 UTC 24 
Aug 2012 

19730 

Sandy 

00 UTC 26 
Oct 2012 

48023 
00 UTC 15 
Sep 2013 

14157 

12 UTC 24 
Aug 2012 

11717 
12 UTC 26 
Oct 2012 

22700 
12 UTC 15 
Sep 2013 

16003 

00 UTC 27 
Aug 2012 

28575 
00 UTC 27 
Oct 2012 

4703 
00 UTC 16 
Sep 2013 

19124 

12 UTC 27 
Aug 2012 

49341 
12 UTC 27 
Oct 2012 

8429 

Karen 

00 UTC 04 
Oct 2013 

15552 

00 UTC 28 
Aug 2012 

42300 
00 UTC 28 
Oct 2012 

34545 
12 UTC 04 
Oct 2013 

12974 

12 UTC 28 
Aug 2012 

50582 
12 UTC 28 
Oct 2012 

30596 
00 UTC 05 
Oct 2013 

13163 

00 UTC 29 
Aug 2012 

20162 
00 UTC 29 
Oct 2012 

30973 
12 UTC 05 
Oct 2013 

113 
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Fig. 1 Flow chart of GSI based EnKF-Variational hybrid data assimilation system for 
HWRF (adapted from Wang et al. 2013). 
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Fig. 2 a) Track, b) minimum sea level pressure and c) maximum wind obtained from best 
track data for Sandy (2012) during October 26 – October 31 in 2012 (Black). Red lines 
are operational HWRF forecasts initialized every 12 hours from 00UTC October 26 to 
00UTC October 29 in 2012 corresponding to each TDR mission. Blue lines are 
corresponding Hybrid-HENS forecasts. Dash lines show the forecasts for each TDR 
mission and solid lines show the average of forecasts valid at the same time. The starting 
and ending point of the forecast from each mission is marked with the mission number. 
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Fig. 3 Flight tracks (blue line) and horizontal distribution of airborne radar data (grey dot) 
for 7 NOAA P3 tail Doppler radar missions. The black line is the best track from NHC.  
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Fig. 4 An example of a Tail Doppler Radar fore scan sweep. The radar is pointing to the 
east. U, N, D and S stand for the upward, northward, downward (ocean surface) and 
southward directions, respectively. The radar scans counterclockwise from U to N to D to 
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S and back to U.  The negative values in blue mean wind towards the radar, and the 
positive values in red mean the wind away from the radar. The radar is scanning a 
southerly wind.  
 

 
 

Fig. 5 Vertical distribution of the number of Tail Doppler Radar data collected during the 
first NOAA P3 mission of Sandy around 00 UTC on Oct. 26th, 2012. 
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Fig. 6 The flow charts for a) NoDA, b) GSI3DVar, c) Hybrid-HENS, Hybrid-HENS.5, d) 
Hybrid-GENS, e) Hybrid-HENS-Hrly, Hybrid-HENS.5-Hrly, f) Hybrid-GENS-Hrly and 
g) GSI3DVar-Hrly experiments.  
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Fig. 7 1000hPa wind speed (shaded) and SLP (contour) for  a) background first guess, 
and analysis after assimilating the first penetration leg of TDR data for b) GSI3DVar, c) 
Hybrid-HENS, d) Hybrid-GENS and e) Hybrid-HENS.5 experiments. The blue dot is the 
best track storm location at 2200Z on Oct. 25th. The black line denotes the corresponding 
flight track associated with the first assimilated penetration leg. 
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Fig. 8 The analysis increment of a) ~ d) wind (purple vector and shaded, 1ms− ) and e) ~ 
h) geopotential height (shaded, m) at 700hPa by assimilating a meridional wind 
observation at the black dot position. The observation is 5 1ms−  larger than the 
background state. The black contour indicates the background sea level pressure. The 
analysis increment is computed using a), e) GSI3DVar, b), f) Hybrid-HENS, c), g) 
Hybrid-GENS, d), h) Hybrid-HENS.5.  
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Fig. 9 SFMR wind speed observation (black) along the flight track during the first 
penetration leg of TDR observation. The x axis is the distance from the starting point of 
the leg. The green line is the first guess and the red line is the analysis along the same 
flight track for a) GSI3DVar, b) Hybrid-HENS, c) Hybrid-GENS, d) Hybrid-HENS.5 
experiments. The values in the parenthesis indicate the RMS fit of the analysis and first 
guess to the observation. 
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Fig. 10 Same as Fig 9 except for assimilating the last penetration leg of TDR data.  
Results for the NoDA experiment is also included in e). 
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Fig. 11 Wind (shaded and vector) and pressure (contour) at 1km height for a) HRD radar 
wind composite, b) GSI3DVar, c) NoDA, d) Hybrid-HENS, e) Hybris-GENS, f) Hybrid-
HENS.5 and g) Hybrid-HENS-Hrly. Black dot is the interpolated best track position. The 
blue line denotes the corresponding flight track associated with the last assimilated 
penetration leg. The red line denotes the corresponding cross-sections to be presented in 
Fig. 12. 
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Fig. 12 Wind (shaded), potential temperature (solid line) and relative humidity (dash line) 
of the south to north vertical cross section for a) HRD radar wind composite, b) 
GSI3DVar, c) NoDA, d) Hybrid-HENS, e) Hybrid-GENS, f) Hybrid-HENS.5 and g) 
Hybrid-HENS-Hrly 
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Fig. 13 a) Track , b) SLP and c) Vmax Mean Error statistics for Hybrid-HENS (green 
solid), Hybrid-HENS.5-Hrly (light blue dash) and Hybrid-HENS-Hrly(dark blue solid) 
experiments during 2012-2013 seasons. The light blue dots above the x axis denote that 
the Hybrid-HENS-Hrly is significantly better than Hybrid-HENS.5-Hrly at a confidence 
level greater than 90%. The light blue crosses above the x axis denote that the Hybrid-
HENS.5-Hrly is significantly better than Hybrid-HENS-Hrly at a confidence level greater 
than 90%.  
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Fig. 14 a) Track , b) SLP and c) Vmax Mean Error statistics for Hybrid-HENS-Hrly (blue 
solid), Hybrid-GENS-Hrly (green dash), NoDA (orange solid) and GSI3DVar-Hrly (light 
blue solid) experiments during 2012-2013 seasons. The light blue, orange, and green dots 
above the x axis denote that the Hybrid-HENS-Hrly is significantly better than 
GSI3DVar-Hrly, NoDA, Hybrid-GENS-Hrly at a confidence level greater than 90%, 
respectively. The green crosses right above the x axis denote that the Hybrid-GENS is 
significantly better than GSI3DVar at a confidence level greater than 90%. 

This article is protected by copyright. All rights reserved.



 74 

 

 
Fig. 15 Correlation coefficient values for all missions during 2012-2013 seasons between 
Hybrid-HENS-Hrly (Blue), GSI3DVar-Hrly (Red) and Hybrid-GENS-Hrly (Purple) 
against HRD composite. The values in the parenthesis denote the average values of all 
cases for each experiment. 
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Fig. 16 Independent verification of analyses (blue) and first guess (red) against a) SFMR 
and b) Flight Level data for experiments during 2012-2013 seasons for Hybrid-HENS-
Hrly, GSI3DVar-Hrly and Hybrid-GENS-Hrly experiments. 
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